跟不上、读不完?上万篇顶会论文,这个工具一键分析
跟不上、读不完?上万篇顶会论文,这个工具一键分析一个研究者一天到底要读多少篇论文才能跟上最新趋势?在 AI 研究成果爆炸的今天,这个数字变得越来越模糊。人的阅读速度,早就跟不上 AI 科研地图扩展的速度了。
一个研究者一天到底要读多少篇论文才能跟上最新趋势?在 AI 研究成果爆炸的今天,这个数字变得越来越模糊。人的阅读速度,早就跟不上 AI 科研地图扩展的速度了。
“搜索调用太贵了。一次 Deep Research 任务可能消耗数百次搜索调用,成本一下子就突破数十美元” ,无论是个人开发者还是AI应用公司都明显有这种感觉。
尽管 LLM 的能力与日俱增,但其在复杂任务上的表现仍受限于静态的内部知识。为从根本上解决这一限制,突破 AI 能力界限,业界研究者们提出了 Agentic Deep Research 系统,在该系统中基于 LLM 的 Agent 通过自主推理、调用搜索引擎和迭代地整合信息来给出全面、有深度且正确性有保障的解决方案。
华为诺亚方舟实验室最近联合香港大学发了一篇针对"Deep Research Agents"(深度研究代理)的系统性综述,在我的印象中,这是他们第二次发布关于Deep Research的综述论文。上一篇里提供了一个结构导向 (Structure-Oriented) 的视角,核心是“分类”。
首个开源多模态Deep Research Agent来了。整合了网页浏览、图像搜索、代码解释器、内部 OCR 等多种工具,通过全自动流程生成高质量推理轨迹,并用冷启动微调和强化学习优化决策,使模型在任务中能自主选择合适的工具组合和推理路径。
疯狂的七月已经落下了帷幕,如果用一个词来形容国产大模型,「开源」无疑是当之无愧的高频词汇。
最强开源深度研究模型来了。 MiroMind ODR(Open Deep Research),来自代季峰加盟陈天桥的技术首秀。 首先,它做到了性能最强,GAIA测试结果更是达到了82.4分,超过了一众开源闭源模型,其中包括Manus、OpenAI的DeepResearch。
全栈开源生态系统:涵盖Agent框架(MiroFlow)、模型(MiroThinker)、数据(MiroVerse)和训练基础设施(MiroTrain / MiroRL)的全栈开源方案,所有组件和流程均开放共享,便于学习、复用与二次开发。
没等来GPT-5,最先更新的是Gemini 2.5 Deep Think,不愧是你,卷王Gemini。
深度研究智能体(Deep Research Agents)凭借大语言模型(LLM)和视觉-语言模型(VLM)的强大能力,正在重塑知识发现与问题解决的范式。